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The problem of the contact interaction of an elastic body with a rigid support with Coulomb friction in the contact area is 
considered. It is assumed that the contact area is known and does not change during loading, and the displacements and their 
gradients are small. The influence of tangential displacements on the contact pressure is investigated. The sufficient conditions 
for which no such effect occurs are formulated. The existence and uniqueness of a generalized solution of the variational 
formulation of the problem is proved using the operator of the influence of displacements on the contact pressure. Q 1997 Elsevier 
Science Ltd. All rights reserved. 

An incremental formulation of the contact problem for general boundary conditions on the contact 
surface and an attempt to prove the existence and uniqueness of the generalized solution are presented 
in [l]. Special cases of frictional contact problems, for which the existence and uniqueness of the 
generalized solution are proved only on the assumption that the value of the friction force at points of 
slip is independent of the solution (the problem with given normal pressure or friction) have also been 
considered [2-4]. Problems in which the contact surface and the pressure on it are independent of shear 
stresses have been investigated in [5-71. A variational principle has been formulated for this class of 
problem and has been used to establish the existence and uniqueness of the solution. The special case 
of a problem with friction with no solution is given in [8]. The question of the existence and uniqueness 
of generalized solutions of problems with friction in a general formulation remains open, even for 
linearlyelastic materials. 

Our purpose here is to continue to develop variational methods for investigating contact interaction 
allowing for friction forces, including an analysis of the existence and uniqueness of the generalized 
solution. 

1. BASIC CONSTRAINTS ON THE FORMULATION OF 
THE PROBLEM. FORMULATION OF THE BOUNDARY CONDITIONS 

IN INCREMENTS ON THE CONTACT SURFACE 

We will consider an approach to the solution of the elastic contact problem with Coulomb friction. 
Because of the difficulty of investigating the solvability of frictional problems [2, p. 1481, we have made 
some simplifications, the main ones being the following: the contact region is known and does not change 
during loading, the displacements and their gradients are small, the trajectories of motion of points of 
the contact surface relative to the rigid support are rectilinear, and we consider loading in which the 
normal reaction of the rigid support is non-zero at each point. 

The last constraint is associated with the fact that, when there is no normal reaction during loading, the directions 
of the relative displacements during loading are not known in advance and must be found from the solution of 
the problem. There is no difficulty in formulating the differential problem and constructing the variational principle 
without the last constraint (see [l] for example), but it is then impossible to prove the existence and uniqueness 
of the solution. 

Note also that these assumptions give us a model problem. However, the possibility of extending the proposed 
method to the contact interaction of two deformable bodies can have practical applications for solving problems 
of temperature and press fittings. 

The contact boundary conditions in increments will be formulated in the light of the above assump- 
tions. At each point of the contact surface L, Coulomb’s law of friction is satisfied: 
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in the slip region 

V#O, la,l=fla,l, ilh>O: u, =-A.v (l-1) 

in the adhesion region 

v =o, lU,lS flo,l (1.2) 

where on, o, are the projections of the reaction of the support onto the outer unit normal n and the 
tangent r to the contact surface LE, the z axis is in the direction of the trajectory of relative motion, v 
is the projection of the velocity of a point of the body relative to the rigid, ort onto the z axis, and 
f(l > f > 0) is the friction factor. At points of the contact surface where the fric ‘on (or cohesive) force SUPK 
is non-zero, the tangent z is defined by the condition that it is in the same direction as that force. 

To take the loading history into account, we will seek the solution of the problem in increments, 
choosing the load in such a way that at each point of the contact surface L,, the increments of the 
components of the stress vector are of a higher order of smallness than its maximum possible tangential 
component at the time of loading, equal to IJ o,, 1. This condition enables us to determine the direction 
of possible relative displacement (in a direction opposite to the positive direction of the tangent) at 
points of maximum equilibrium and at points where the reaction of the support is in a small neighbour- 
hood of the surface of the cone of friction, and also eliminates the possibility of the contact surface 
separating from the support during loading. 

Suppose that at some arbitrary time the contact surface comprises an adhesion area Lc = {x E I+ 1 
lo,1 <fla,,l) andtheareaLi = {x E I+ 11 o, 1 = f 1 o,, I), which joins the slip surface (v + 0) and the 
surface of limiting equilibrium (v = 0). We then have L, = b U L1. 

After loading, the contact surface can be represented as the union of two parts 

Lc =L;uL;, L; ={xEL,16u=o), L; =(XEL,l6u#o) 

where 6u are the displacements of points of the contact surface relative to the rigid support during 
loading. The region Lt (region Ll) is formed by points of the contact surface at which adhesion occurs 
loading (shear has occurred). 

We now assume that shear during loading takes place continuously. Then in the region Lf 

l%+~Tl=fl~,+~,I (1.3) 

where 60; and 60, are the increments of the tangential and normal components of reactions of the 
rigid support during loading. From Eqs (1.1) and (1.2) and the assumption about the shape of the 
trajectories of motion of points of the contact surface, we conclude that the relative displacements on 
the contact surface satisfy the conditions 

6U “=O, i3ub=0 on L, 

IhI ,=O on Lt,, &,<O on L; (1.4) 

&lb = 0 is the projection of the displacement onto an axis perpendicular to the normal n and the tangent 
7. Finally, using relations (1.3) and (1.4), the boundary conditions can be formulated as follows: 

6U m=o, i!iUb =o 

~ul=OjQ,+~,+f(b,+~,)CO (1.5) 

~,<Oja,+60,+f(<r,+60,)=0 

2. A DIFFERENTIAL FORMULATION 

We will now consider the quasistatic ceformation of an elastic body which occupies the region s in 
R3 with a regular boundary [4, p. 1971 L, S = S U L, with L divided into three mutually non-intersecting 
parts: L = I.,, U L, U LW On L,, we are given kinematic boundary conditions, on Lb the forces, and on 
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L, the contact boundary conditions. We choose a reference system with respect to which the rigid support 
is fixed, in which the equations and boundary conditions of the problem are 

V.t5+6=0, VXES (2.1) 

tE=+Th2+6uV). i%=i..& VXES (2.2) 

6u=O on L,, &?.n=6P on L, (2.3) 

((2.1) are the equilibrium equations, (2.2) are the geometric and constitutive relations, and (2.3) are 
the kinematic and static boundary conditions). 

To relations (2.1X2.3) we add the boundary conditions on the contact surface (1.5). 
We now define the set 

U={Su~(C~(5))*1&1=0 on L,, 5u,=ihb=0, sU,gO on I+1 

A function 6u E U which satisfies relations (1.5), (2.1X2:3) will be called a classical solution of the 
problem. 

Under the given assumptions, at any time t the stress and strain fields can be related to the 
corresponding fields at time t + 6t after loading. 

Note. It is assumed that the stressed state at the time of loading is known, with ob = 0 on the contact surface. 
It does not follow in the general case that the increment of this component 6ob after loading is zero. However, if 
the condition that the trajectories are rectilinear holds, we have 6ob = 0. For instance, in the axisymmetric problem 
or the problem of a plane-stressed state, the domain of definition of the known quantities implies that the stress 
increment 6ob is zero. 

3. A VARIATIONAL FORMULATION 

Let 6u be a classical solution of problem (1.5) (2.1)-(2.3), 6u E U. We first find the scalar product 
of the equilibrium equation (2.1) by the expression 6v - 6u, where 6v E U, and integrate over the region 
S, and apply the Ostrogradskii-Gauss theorem to the resulting expression. Using the constitutive and 
geometric relations, the boundary conditions, and the definition of the set U, we obtain 

A(th,6v-tiu)-(f,6v-6u)= 16a,(6v,-h,)dLc, b’6v~U 
L, 

A@u,~v-ih)=j ~(&1)&~(6v-~u)ds 
S 

(f,&-6u)= J 6P~(6v-Gu)dL,+~ SF+@v-Gu)dS 
LO S 

We then use the fact that on the contact surface L, 

(3.1) 

(0, +&r, +f(o, +60,))(&, -6u,)a 0 (3.2) 

In fact, if 6% = 0 according to (1.5) the first multiplier is non-positive, and from the definition of 
the set U we have 6v, G 0. But if 6u, < 0, according to (1.5) the first multiplier is equal to zero and 
strict equality applies in (3.2). 

We now add to the left- and right-hand sides of Eq. (3.1) the expression 

j (0, + f(o, + &,))@v, - h)dL, 
LC 

We will introduce the notation g = CJ~ + fq,, with g = 0 on Lr. Then, using (3.2), we obtain 

A(6u,6v - 6~) - (f.6~ - &I) + j g@v, -&I,&, + 

+ j ffi,(Sv, -Gu,)dL, a 0, hVtiv E U 
Lc 

(3.3) 
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We have thus proved the following theorem. 

Theorem 1. A classical solution of problem (l.S), (2.1)-(2.3) satisfies inequality (3.3). 
Consider the following problem. 

Pro&m 1. It is required to find 6u E U 

A(6u&-6u)-(f&-6u)+ J g(6v, -Gu,)dL, + 
kl 

+ j ftk~,@v, - h,)dL, 9 0, V6v E U 
L, 

(3.4) 

Theorem 2. A solution 60 of Problem 1 satisfies all the given kinematic boundary conditions in the 
relations of the differential problem (1.5) and (2.3), and the stress tensor defined in terms of 60 by the 
geometric and constitutive relations (2.2) satisfies the equilibrium equations (2.1) and all the given 
boundary conditions in the forces in relations (1.5) and (2.3). 

Proof. Suppose that inequality (3.4) has a solution &I. If, in inequality (3.4), the element 6v E U 4 
taken first as &I + q E U, and then as 60 - q E U, where the function q E U is finite in the region S, 
then 

A&q)-j tiF.qdS=O 
S 

It follows from this equation, the relation between 6u and the strains and stresses (relations (2.2)), 
and the arbitrary choice of q that the equilibrium equation (2.1) holds. We find the scalar product of 
IZq. (2.1) and the vector 6u - 6v, where 6v, &I E U, integrate the resulting expression over the region 
Sand apply the Ostrogradskii-Gauss theorem. We then subtract the resulting relation from inequality 
(3.4). We finally obtain the inequality 

I @VT -Gu,)f& + I ffq@v, - &l,)dL, - j tiP*(& - Gum, + 
Lo LC LU 
+I n.&i(&-Gu)dL,+ j 60,(6v,-Gu,)dL,-30, V~VEU (3.5) 

L, L, 

We choose an element 6~ U for which &I = 6v on L\L,. Then inequality (3.5) will take the form 

whence it follows, since 6v is arbitrary on L,, that the static boundary conditions in (2.3) are satisfied. 
Now, taking into account the definition of g and the fact that static boundary conditions are satisfied, 

we can write inequality (3.5) in the form 

I!’ 
0, + 60, + f(o, + &T”))(&, -Gu,)dL, 2 0, V6v E u (3.6) 

c 

The points of the contact surface where the equation 6u, = 0 is satisfied form a region L$. Since Sv, 
is non-positive on L$, and was chosen arbitrarily from inequality (3.6), it follows that 

(6,+h,)+f{cJ,+&o,)sO on Leo 

On the other part of the contact surface L*l au, < 0. Then, since 6v, was arbitrarily chosen, it follows 
from inequality (3.6) that 

(a,+tb,)+f(a,+60,)=0 on L; 

The kinematic boundary conditions &I = 0 on L,, and 6u, = 6ub - - 0 on Lc follow from the definition 
of the set U. This proves the theorem. 

A solution of Problem 1 in the wider class of functions 
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W=(~~E(H’(S))~I&I=O on L,, 6u,=6ub=0, 6u,cO on L,} 

675 

where (FI’(S))3 is a Sobolev space [4] will be called a generalized solution. Here and below function 
values on the boundary are understood as the values of the trace operator [4, pp. 48-511. 

The analysis of generalized solutions of Problem 1 is complicated by the fact that the operator which 
sets the element &I E W in correspondence with the distribution of the contact pressure 60, on the 
contact surface L, is undefined [2, p. 1481. 

4. OPERATOR OF THE INFLUENCE OF RELATIVE SHEARS 
ON THE CONTACT PRESSURE 

Suppose that the tangential displacements 6y,, defined by the trace operator [4] 

ys: (H’(f# + II”* 

are given on the contact surface Sy,. 
Using the given tangential displacements gy,, which are the trace of elements of the set W, we define 

the set 

2 = (6~ E W Iih, = 6y, = y,Gy) on L,) 

We now consider the boundary-value problem (2.1X2.3) with kinematic boundary conditions 

6u,=8ub=0, 8u,=6y, on L, (4.1) 

The following problem is the equivalent of problem (2.1)-(2.3), (4.1) for smooth functions in a 
variational formulation. 

Problem 2. It is required to find 6u E Z 

A(6u,&-tiu)=(f,6v-6~), v6vez (4.2) 

We will prove this statement. Let 6u be a solution of problem (2.1)-(2.3), (4.1). Then relation (4.2) is obtained 
by repeating the proof of relation (3.1), allowing for the fact that 6v, = 6u, = Sy, on L,. 

We now prove the inverse. Let &I be a solution of Problem 2. ‘I&e 6v = &I + q, where the function q is tin&e in 
the region S. Then the equilibrium equation (2.1) follows from relation (4.2) is the deformations and stresses on 
&I are defined by relations (2.2). T&king the scalar product of Eq. (2.1) by 6v - &I. 6v E Z, integrating it over the 
region S, applying the Ostrogradskii-Gauss theorem and then subtracting the resulting relation from (4.2), we have 

o= j 6P.(6v-6u)dL,- j n.G.(Sv-WdL,, VsvEz 
La La 

Since the choice of Sv was arbitrary, the last equation gives conditions in forces on the surface 4. 
The kinematic boundary conditions on the surfaces L,, and L, follow from the definition of the set Z. 

We will need an equivalent statement of Problem 2 in the form of a minimization of a quadratic 
functional. 

We define the space 

X = (6~ E (H’(S))3 16~ = 0 on L,} 

and introduce the norm 

IlSVli~ =ckw% (Sv,Sv>=j ss(sv)~&*tz(ih)d!3 
S 

(4.3) 

where (6v, 6v) is the scalar product in the space X [2,4]. 
We also define the space 

Z, =(6u~XI8u=O on L,) 
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which is a subspace of the space X. 
Any element x E X can be represented uniquely in the form 

[9, Theorem 6.4.11 

x=y+z,where ye ZO,ZE X,zlZo (4.4) 

Consider two arbitrary elements a, b E X for which a = b on L,. Using (4.4), we will represent these 
elements as follows: 

a = a0 + al, b = b. + bl 

aor bo E ZO, 81, bl E X, air bll ZO 

We carry out the transformations 

a=b+(a-b)=bo+bl+(a-b)= 

= hl + [bo + (a - b)] = bl + CO (CO = [b. + (a - b)] E Z,) (4.5) 

Since the expansion (4.5) is unique, we obtain a1 = b,. 
Thus, any element 6u E X for which 6u = Sy on Lc (Sy E X) can be represented uniquely in the form 

6u = 6uo + 6w (4.6) 

where 

&I E ZO. 6W E X, 6W I ZO, 6w = 6y on L, 

where &V is independent of the choice of 6v. 
We can use Eq. (4.6) to expand the solution of Problem 2, since &I E X. We have 

6u = iho + 6w 

where 

tiuo~ X0, 6we X, 6wIXo, wt=ysr w,=wo=O on L, 

Applying this expansion also to elements 6u E Z in (4.2), we find that 

A (SW + ho, 6u,, - 6uo) = (f, ho - 6uo) 

whence for 6uo = 0 we have 

A G&j, 6uo) = (f, ho) 

Using (4.6) and the last equation, we can reformulate Problem 2 as follows. 

Problem 2a. It is required to find 6v0 E Z, 

A (6~0, ho) = (f, 6uo), V ho E zo, 6u = ho+ SW, aw E z, 6w I z. (4.7) 

The contact pressure can be found in terms of Lagrange multipliers. We will omit the constraint on 
the normal component of the displacements in the contact region &I, = 0 when determining an 
admissible set of displacements Z,-,. This can be done with a Lagrange multiplier which, as we shall show, 
is the same as the increment of the normal component of the reaction of the rigid support during loading. 

We then define the functional 

J (6~~) = ; A (6~0, tk,,) - (f, Su& 
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and consider an equivalent problem to Problem 2a. 

Problem 3. It is required to find 6u0 E Z, 

J(~u,) c JGu,), V$, E Z,, 6u = &I, + SW, 6w E z, 6wlZ, (4.8) 

The solution of Problem 3 is unchanged when the expression A (f&v, 6~s) is added to the functional 
J (&a), since 6vs E Zo and 6w I Z,-,. We can therefore write a dual formulation of Problem 3 as follows 
[ 101. 

Problem 4. It is required to find 

SUP inf Q(gu,, p’) 
P*w*(L,) Y % % 

Y,=@uEX I 8uT=6ub=0 on L,} 

@@u,, p’)= J(6u,)+A(tiw, b,)-(p’, b,,) 

6u,, =Yr,(6qJ), y,:(H’(S))” + I-IX(L,) 

(4.9) 

where Hem(&) is the conjugate space to Hv2&) and y,, is the trace operator defining the normal compon- 
ent of displacements on L, 

Now suppose that (gut, q*) E Y0 x H!‘*(L,) is a solution of Problem 4. We will show that the first 
component au,, is a solution of Problem 3, and the second component q* is the increment of the normal 
component of the contact pressure. 

For a saddle point we have 

After computing the derivatives we obtain 

A(~w+~uw %)-(f. Gu,)-(q’, av,,)=o, %J, EY() (4.10) 

(P** %,)= 0, VP* d'k,) (4.11) 

From relation (4.11), since the choice of p* was arbitrary, we have &,, = 0 on Lc Hence, gut, E Z,-,. 
We now consider relation (4.10). We have Z, C Ya, and thus relation (4.10) holds for any 6us E Zs. Then 

A(&,, ho)-(f, b,)=O, V&-,EZ, 

Thus we have proved that 6us is a solution of Problem 3. 
We will determine the meaning of a Lagrange multiplier in terms of mechanics on the assumption that 

6ns + 6w is a regular function. Then in (4.10), taking 6vs as fmite functions on K and using the relation 
between the displacements, strains and stresses (2.2), we obtain the equilibrium equation in the form 

V.&3(6uo+6w)+6F=0 (4.12) 

‘Ming the scalar product of Eq. (4.12) by an arbitrary element 6vs E Yc, integrating over the region 
5 and applying the Ostrogradskii-Gauss theorem, we obtain an equation which we subtract from Eq. 
(4.10) and obtain the expression 

(q’, tN”o)= ~n~s3(6u,+6w)duo”dL,, Vih,EYo 
4 

(4.13) 

which gives the meaning of the Lagrange multiplier in terms of mechanics. 
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We will define the Hilbert space 

H=(suEX I su, =su,=o on L,) 

Theorem 3. If Y,, I I-I, the increment of contact pressure during loading is independent of the size of 
the relative shears. 

The theorem is proved by repeating the derivation of (4.13) taking into account the equation A (&v, 
5~s) = 0, which follows from the fact that the spaces are orthogonal. 

For contact problems to do with plates, orthogonality with respect to the energy norm of the spaces used is a 
consequence of the fact that the membrane displacements which determine the tangential displacements in the 
contact region are independent of the displacements normal to the surface of the plate. Other cases in which the 
contact pressure is independent of the friction and cohesive forces are discussed in [5]. This class of problem has 
been studied in detail in [5-7] and elsewhere. 

Thus, the method can be used to determine the contact pressure in the sense of Eq. (4.13) for given 
relative shears. The operator which sets the increment of contact pressure in correspondence with the 
tangential shears 6w, and L, is thereby determined 

where q* is a linear functional. 

p:sw, + q* E H!(LC) (4. 14) 

We will now investigate the properties of the functional q*. The condition 6w, = 0 corresponds to 
the functional q$ defined by relation (4.10) 

(q;, 6v,,)=A(&,. &,)-(f, “,-,)v ~~,~Y,, (4.15) 

where &I,, is a solution of Problem 3. 
We will now consider an arbitrary distribution of shears 6w, on I+ and use (4.10) to determine the 

functional q* responsible for the contact pressure distribution 

(d. &,,)=A@,,+ SW, h,)-(f, 6vo), VS~,EY~ (4.16) 

where, as before, 6~ is a solution of Problem 3. 
Subtracting Eq. (4.15) from (4.16), we have 

((I:* hhJ = A(Sw, Su,), VSv, E Y,,; q: = q* -q; (4.17) 

Thus, the operator which determines the contact pressure can be represented in the form of a sum 
of two linear functionals 

Since the mapping 6w + qg is linear (relation (4.17)), the linear functional 4% can be represented 
by a bilinear form, which we will denote by p,,. The one-to-one correspondence (4.6) between 6w, on 
L, and w E Z and relation (4.17) enables us to define p,, as follows: 

p,(; .):HH(L,)x HK(L,) -+ R 

Hence we have proved that there is a linear operator which determines the contact pressure from 
the relative shears. We will use this operator to rewrite the last integral in (3.4) 

(4.18) 

The existence and uniqueness of a solution of problems of the type (4.10), (4.11) has been considered 
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earlier [lo, Proposition 5.2, p. 741. In the case of elastic materials, a solution of the problem exists and 
its first component 6% is unique. Using the regularization method of [ll] and taking the limit as the 
regularizing addition tends to zero, it can be proved that the Lagrange multiplier is unique. 

Thus in this section we have proved that there is a linear operator which sets the relative shears on 
the contact surface in correspondence with the contact pressure increment. 

5. PROOF OF EXISTENCE AND UNIQUENESS 
OF THE GENERALIZED SOLUTION 

We will rewrite problem 1 to take Eq. (4.18) into account, as follows. 

Problem la. It is required to find 6u E W 

B(6u. 6u-au)-(s, &I-+O, tl6u E W 

B@u, &J-6u)=AQh, 6v-h)+fp,@u,, &-6uT) 

(s, 6u-8u)=jc1g(sy. -6u,)dLo -(f, b-ih)+f(q;. sU,-~~) 

(5-l) 

We will now take the generalized solution to mean the solution of problem la. 
The existence of the operator P,, was proved above. Before the question posed in this section can be answered, 

we need to investigate the properties of this operator. 
We will define a norm in the space Hm(LJ, which is the region of values of the trace operator y$ with domain 

of definition H 

Pl”)4(L ) = i&i. 
(5.2) 

c 
y@)=6a 0” Lc y&m=61 on LL 

Relation (4.17) implies that 

where sup is taken over 6uL E Ys, ]lSuJx = 1,&o H,bvIZo,y,(6w) = Gw,onb. 
From inequality (5.3) and the definition of the norm (5.2), we obtain the inequalities 

lb1 2 
3- 

X’ 
V6u~H:y6u=&u, on L, 

Relation (5.4) and the condition 0 < f < 1 imply that the operator B is coercive 

B&J, &)=A(lh W+IpwGu,, ~~P~B+f~bll~~ - 

(5.3) 

(5.4) 

(5.5) =,l-f)~ih~‘,, VGueH 

We will inequality (5.3) to prove that B is bounded 

(5.6) 

There is a theorem [12] which states that if B is a coercive bilinear form on R, W C H is a closed convex set and 
II E El* (HZ is the conjugate space to IS), then there is a unique solution of the following problem. 

It is required to find 6u E W 

5(&a, &-&r)-(h, 6u-+O. ViieW 
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We will compare the conditions of this theorem with those of the problem solved above. The operator B is linear 
in each of its arguments. Since (5.6) is bounded, B is continuous. Hence it is a bilinear form H. That B is coercive 
follows from inequality (5.5). Suppose that the volume and surface forces satis@ the condition h E H*. The convexity 
and closure of the set W are obvious. Thus the conditions of the above theorem are satisfied and we have proved 
the following theorem. 

Theorem 4.1. Problem la has a unique generalized solution. 

This research was supported by the Russian Foundation for Basic Research (95-01-001522). 
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